Как составить самостоятельно задачу

Сегодня мы продолжаем серию видеоуроков, посвященных задачам на проценты из ЕГЭ по математике. В частности, разберем две вполне реальных задачи из ЕГЭ и еще раз убедимся, насколько важно внимательно читать условие задачи и правильно его интерпретировать.

Итак, первая задача:

Задача. Только 95% и 37 500 выпускников города правильно решили задачу B1. Сколько человек правильно решили задачу B1?

На первый взгляд кажется, что это какая-то задача для кэпов. Наподобие:

Задача. На дереве сидело 7 птичек. 3 из них улетело. Сколько птичек улетело?

Тем не менее, давай все-таки сосчитаем. Решать будем методом пропорций. Итак, у как составить самостоятельно задачу нас есть 37 500 учеников — это 100%. А также есть некое число x учеников, которое составляет 95% тех самых счастливчиков, которые правильно решили задачу B1. Записываем это:

37 500 — 100%
X — 95%

Нужно составить пропорцию и найти x. Получаем:

Пропорция в задаче на проценты (неизвестно итоговое значение)

Перед нами классическая пропорция, но прежде чем воспользоваться основным свойством и перемножить ее крест-накрест, предлагаю разделить обе части уравнения на 100. Другими словами, зачеркнем в числителе каждой дроби по два нуля. Перепишем полученное уравнение:

Та же самая пропорция, но после преобразования (сократили обе стороны на 100)

По основному свойству пропорции, произведение крайних членов равно произведению средних членов. Другими словами:

x = 375 · 95

Это довольно большие числа, поэтому придется умножать их столбиком. Напоминаю, что пользоваться калькулятором на ЕГЭ по математике категорически запрещено. Получим:

x = 35 625

Итого ответ: 35 625. Именно столько человек из исходных 37 500 решили задачу B1 правильно. Как видите, эти числа довольно близки, что вполне логично, потому что 95% тоже очень близки к 100%. В общем, первая задача решена. Переходим к второй.

Задача. Только 80% из 45 000 выпускников города правильно решили задачу B9. Сколько человек решили задачу B9 неправильно?

Решаем по той же самой схеме. Изначально было 45 000 выпускников — это 100%. Затем из этого количества надо выбрать x выпускников, которые должны составить 80% от исходного количества. Составляем пропорцию и решаем:

45 000 — 100%
x — 80%

Пропорция для решения второй задачи на проценты (неизвестно итоговое значение)

Давайте сократим по одному нулю в числителе и знаменателе составить 2-й дроби. Еще раз перепишем полученную конструкцию:

Та же самая пропорция после сокращения правой дроби на 10

Основное свойство пропорции: произведение крайних членов равно произведению средних. Получаем:

45 000 · 8 = x · 10

Это простейшее линейное уравнение. Выразим из него переменную x:

x = 45 000 · 8 : 10

Сокращаем по одному нулю у 45 000 и у 10, в знаменателе остается единица, поэтому все, что нам нужно — это найти значение выражения:

x = 4500 · 8

Можно, конечно, поступить так же, как в прошлый раз, и перемножить эти числа столбиком. Но давайте не будем сами себе усложнять жизнь, и вместо умножения столбиком разложим восьмерку на множители:

x = 4500 · 2 · 2 · 2 = 9000 · 2 · 2 = 36 000

А теперь — самое главное, о чем я говорил в самом начале урока. Нужно внимательно читать условие задачи!

Что от нас требуется узнать? Сколько человек решили задачу B9 неправильно. А мы только что нашли тех людей, которые решили правильно. Таких оказалось 80% от исходного числа, т.е. 36 000. Это значит, что для получения окончательного ответа надо вычесть из исходной численности учеников наши 80%. Получим:

45 000 − 36 000 = 9000

Полученное число 9000 — это и есть ответ к задаче. Итого в этом городе из 45 000 выпускников 9000 человек решили задачу B9 неправильно. Все, задача решена.

Я надеюсь, что этот ролик поможет тем, кто самостоятельно готовится к ЕГЭ по математике. А у меня на этом все. С вами был Павел Бердов. До новых встреч!:)

Смотрите также:

  1. Процент: налоги и зарплата. Считаем с помощью коэффициентов
  2. Задачи на проценты: считаем проценты с помощью пропорции
  3. Решение квадратных уравнений
  4. Основное тригонометрическое тождество
  5. Пробный ЕГЭ по математике 2015: 4 вариант
  6. Задача B5: площадь фигур с вершиной в начале координат

Источник: http://www.berdov.com/ege/percent/standartnii-metod-proporcii/


Рекомендуем посмотреть ещё:


Закрыть ... [X]

Как самостоятельно составить эффективный кейс Статья Как сделать интервал в курсовой работе

Как составить самостоятельно задачу Самостоятельно составьте задачу на счет ле - Школьные
Как составить самостоятельно задачу Как научить ребенка решать задачи - сайт Анищенко Н.А
Как составить самостоятельно задачу СОСТАВЛЕНИЕШЕНИЕ ПРАКТИЧЕСКИХ ЗАДАЧ НА
Как составить самостоятельно задачу Как составить список дел Блог 4brain
Как составить самостоятельно задачу M - все о IT мире
Как составить самостоятельно задачу Адаптивная система освещения для автомобилей Поделки для
Как составить самостоятельно задачу Внутренняя отделка дома своими руками Школа строительного
Как составить самостоятельно задачу Выбираем шторы для балкона или лоджии. Дизайн штор для
Как составить самостоятельно задачу Вьетнам - «Самостоятельно во Вьетнам (май 2014) - отзыв
Дверь пенал - цена, купить межкомнатную дверь Декоративный огород: фото оформления и идеи красивого дизайна Интернет-магазин игровых приставок Как сделать БУКЕТЫ ИЗ КОНФЕТ. Букеты из конфет своими руками Как сделать волосы пушистыми и волнистыми Уход за